Graphs, Parallel Algorithms and Approximation

Alicia A. Thorsen, Ph.D. Candidate
Department of Computer Science
Michigan Technological University
athorsen@mtu.edu

Committee Members:
Dr. Phillip Merkey
Dr. Steven Seidel
Dr. Charles Wallace
Dr. Fredrik Manne, University of Bergen, Norway
Combinatorial Scientific Computing (CSC)

- Interdisciplinary field of CS
- Focuses on combinatorial problems found in CS&E
- Applications in:
 - Mesh generation
 - Sparse linear systems
 - Computational chemistry
 - Bioinformatics
 - Statistical physics
- Need for highly scalable parallel algorithms
Parallel Graph Processing

- Graph algorithms are central to many areas of CSC
 - Matching
 - Coloring

- Difficult to write parallel programs
 - Computation is data-driven
 - Hard to partition data
 - High data-access to computation ratio
 - More exploring the graph than computation
 - Performance dominated by linked loads

- Graph problems are highly unstructured
Parallel Programming Paradigms

- Message passing
 - Widely used
 - Private memory
 - Explicit communication using messages
 - Suitable for regular problems
 - Structured computation & communication
 - Data can be easily partitioned
 - Not suitable for graph problems
 - Explicit communication required is non-intuitive
 - Code is difficult to develop and maintain
Parallel Programming Paradigms cont'd

- Shared Memory
 - Global memory
 - Implicit communication through reads & writes
 - Suitable for graph problems
 - Implicit partitioning of data
 - Implicit communication
 - High correlation with sequential algorithms
- Hidden overheads from communication
 - Difficult to analyze
 - Affects scalability
Partitioned Global Address Space Programming Model

- Aims to address problems with shared memory
- Partitions the shared space so that a portion is local to each processor
- Allows programmers to exploit data locality
- One such language is UPC
Research Goals

- Develop highly scalable parallel graph algorithms for CSC problems
 - Weighted Matching
 - Vertex Coloring
- Exploit both fine-grained and coarse-grained communication
- Evaluate algorithms with respect to a performance model for anticipated UPC platforms
Weighted Matching Problem

- Given a weighted graph \(G(V,E) \)
 - Find a set \(M \) of non-adjacent edges with maximum weight

- Applications
 - Scheduling
 - Network routing
 - Load balancing

Weight of matching is 30
Exact Algorithms

- Best sequential algorithm
 - $O(n^2m)$ - Edmonds, 1965
 - Optimized $O(nm + n^2\log n)$

- No practical polynomial-time parallel algorithms
 - Algorithms developed for PRAM model
 - Requires exponential processors
Approximation Algorithms

- **Greedy algorithm**
 - Sort edges, iteratively choose heaviest & discard neighbors
 - $O(m \log n)$
 - $\frac{1}{2}$ approximation ratio

- **Preis’ LAM algorithm**
 - Finds same matching as greedy without sorting
 - $O(m)$
 - Uses locally dominant edges
 - Edges that are heavier than their incident edges

- **Hoepman's distributed protocol**
 - Distributed version of Preis' LAM algorithm
 - Average case $O(\log m)$
Initially dominant

Subsequently dominant

Weight of matching is 30

Weight of matching is 30
Sequential Manne-Bisseling Algorithm

foreach $u \in V$

mate(u) = heaviest-available(u)

if (mate(mate(u)) == u)

 $M = M \cup \{(u, \text{mate}(u))\}$
 $Q = Q \cup \{u, \text{mate}(u)\}$

while $Q \neq \emptyset$

 Remove u from Q

 foreach $v \in V$ s.t. mate(v) == u and $v \notin M$

 mate(v) = heaviest-available(v)

 if (mate(mate(v)) == v)

 $M = M \cup \{(v, \text{mate}(v))\}$
 $Q = Q \cup \{v, \text{mate}(v)\}$

return M
Parallel Manne-Bisseling Algorithm

- Find initially dominant edges

```plaintext
foreach u ∈ myV
    mate(u) = heaviest-available(u)
synchronize

duplicate

duplicate
```

```plaintext
foreach u ∈ myV
    if (mate(mate(u)) == u)
        M = M ∪ {(u, mate(u))}

    myQ = myQ ∪ {u}
    if (mate(u) ∈ myV)
        myQ = myQ ∪ {mate(u)}

synchronize
```
Parallel Manne-Bisseling Algorithm

- Find subsequently dominant edges

```c
while myQ ≠ Ø
    Remove u from myQ
    foreach v ∈ V s.t. mate(v) == u and v ∉ M
        if (v ∉ myV)
            notify owner(v) to add u to its Q
        else
            mate(v) = heaviest-available(v)
            if (mate(mate(v)) == v)
                M = M ∪ {(v, mate(v))}
            myQ = myQ ∪ {v, mate(v)}

synchronize
return M
```
 MPI Implementation

- Create ghosts vertices for boundary edges
 - Run sequential algorithm on local portion of graph
 - Update owners of ghost vertices
- Uses Bulk Synchronous Processing (BSP) model
 - Compute – Communicate supersteps
- Problems
 - Keeping track of ghost vertices
 - Efficiently packaging messages
 - Lots of arithmetic
UPC Implementation

- **Graph distribution**
 - Use Metis graph partitioning library
 - Returns a vertex based partitioning
 - Create an array of vertex nodes
 - Max # of vertices in a partition is the blocking factor
 - Add dummy vertices
 - Renumber vertices

- **Each vertex node is a struct which contains**
 - Vertex id
 - Desired Mate
 - Flag indicating if it has been matched with its mate
 - Linked list of neighbors
 - Each neighbor node contains
 - Id of vertex and weight on incident edge
 - Edges are repeated
UPC Implementation

- Synchronous implementation
 - Similar to MPI compute – communicate supersteps
 - Processes write all notifications in one step
 - Coarse grained communication
 - Pros:
 - Program runs smoothly and gives correct results
 - Cons:
 - Requires 2 barriers
 - Processes wait even when they have work to do
 - Scalability is bad on local machines
 - Is this the way we want to write UPC applications?
UPC Implementation

- Asynchronous implementation
 - Processes write notifications as they are discovered
 - Fine-grained communication
 - Pros:
 - Easy to program with atomic ops
 - Program is simpler, looks a lot like sequential algorithm
 - Theoretically should be faster
 - Cons:
 - Doesn't work! Incorrect results.
 - Process spinning on a variable prevents an atomic write
 - We promote using UPC this way but no actual support
Performance Model

- Initial mates precomputed in graph input stage
 - Finding initially dominant edges is embarrassingly parallel
 - Performance is dominated by small set of remote reads
 - Influenced by quality of the partition
 - No remote writes
- Finding subsequently dominant edges is harder
 - Many remote reads
 - Remote writes can be either fine or coarse grained
 - Synchronization
What Can Help?

- Using cache
 - But what about atomic ops?
 - Locks are bad

- True shared memory machine
 - No Cray X1

- Theoretical machine of the future?
 - Aka anticipated UPC platforms

- Asynchronous version
 - Data structures for the “spin lock” problem?